

Carl ZEISS AG General presentation and Metrologies at ZEISS

Dr. Richard Quintanilha Corporate Research and Technology

21-22 September 2023

IMEKO TC10 Conference

FACTS

ZEISS Worldwide

Employees incl. Corporate functions and SSCs Status: September 30, 2022

FACTS

New patent applications

638

R&D investments in € million

1.151

Investment by % of revenue

13%

Investments in Research & Development

Innovations shape the future: Research and development teams at ZEISS are working hard to constantly expand our role as technology leader and market shaper. ZEISS has been making sustainable investments in R&D in order to achieve this goal.

ZEISS Segments - Shaping the Future

Consumer M	larkets	kets Medical Technology		Industrial Q uality & R esearch		Semiconductor Manufacturing Technology		
Vision Care	Consumer Products	Microsurgery	Ophthalmic Devices	Industrial Quality Solutions	Research Microscopy Solutions	Semiconductor Manufacturing Optics	Semiconductor Mask Solutions	Process Control Solutions
1.569	€ billion in revenue	2.251	billion in revenue	2.066	€ billion in revenue	2.757	7 € billion in	revenue
13,008	B employees	6,829。	mplovees	7,534	emplovees	6,21	5 employees	

Manufacturing trends determine the trends of manufacturing metrology

Trends of Manufacturing

New Materials	More complex parts	Faster production	High performance parts		
	na Metrology	ds in Manufacturi			
Fast	automatic data	ducing measuring	increasing		
Accurate	certainty	easuring errors / unc	reducing r		
Reliable	verification of measuring uncertainty				
Flexible	ng information density	oarts increasin	measuring inaccessible		
Holistic	increasing variety of measuring techniques				

Enabling New Vision

Consumer Markets

Vision Care

- Eyeglass lenses & accessories
- Devices for vision tests & eye measurements
- Platforms and applications for opticians and consumers

Consumer Products

- Binoculars & spotting scopes for nature observation
- Hunting optics
- Mobile photography
- Lenses for Photography & Cinematography
- Industrial lenses

ZEISS

MediTec

Ophthalmology (OPT)

- Comprehensive solutions to diagnose and treat eye diseases
- Systems and consumables for Cataract, Corneal Refractive, Glaucoma and Retinal applications
- Focus on networking of systems and the integrated management of data, to make workflows in hospitals and medical offices efficient

Microsurgery (MCS)

- Complete product range of visualization solutions for minimally invasive surgical treatments (e.g. Neuro, ENT, Dentistry)
- Intraoperative diagnostics that improve surgical procedures by providing information beyond what is visible to the human eye (fluorescence, confocal, AI image processing)
- Intraoperative workflows that support surgical treatments beyond visualization

ZEISS Medical Technology Enabling Ophthalmologists

Even the simplest medical treatments and routine surgeries are a real challenge in the Brazilian rainforest. Dr. Jacob Cohen founded the "Project Amazonas" aid program. Twice a year a group of surgeons and a team of medical personnel visit the interior of the Brazilian Amazonas region with medical technology from ZEISS for ophthalmic examinations and operations.

ZEISS IOLMaster 700

ZEIN

Assuring Quality and Precision – Seeing even the finest Details

Industrial Quality & Research

Industrial Quality Solutions

- Contact and optical measuring systems
- Computed tomography
- Measuring, analysis & management software

Research Microscopy Solutions

- Light microscopy
- Laser scanning microscopy
- Electron microscopy
- X-ray microscopy

Making Living Cells Visible

The first prototype of a phase-contrast microscope built by ZEISS in Jena (1936) based on Zernike's design:

Frits Zernike (Nobel Laureate, 1953)

First phase contrast microscope

First film on cell division by Kurt Michel with the aid of the newly-invented phase contrast microscope (1943):

Meiosis in the spermatogenesis of the grasshopper

Resolution Beyond the Diffraction Limit PhotoActive Localization Microscopy Principle

The ZEISS Elyra system is based on the PALM Principle, developed by Eric Betzig and Harald Hess.

Eric Betzig (Nobel Laureate, 2014)

Comparison of confocal and PALM images

- Sequential imaging of blinking fluorescence proteins
- Combined with localization of the center of each signal
- Enables better separation of structures
- Maximum resolution: approx. 10 nm

6 keys applications segments of Industrial Microscopy

Decarbonization is one key driver for market transformation

New metrology applications arise, while others disappear

ZEISS

ZEISS Industrial Quality Solutions

14

Customer segments

Automotive, NEV, ICE, Car-Body

Machine Tools & Engineering & Heavy Machinery

Power & Energy

Medical

Aerospace & Defence

Electronics

ENABLING CUSTOMERS

Metrology Key to series production

Hardly any other vehicle manufacturer is focusing as consistently on the electrification of its portfolio as the Volkswagen Group. The first vehicle designed purely as an electric car is the VW ID.3. The main components of the electric motor are produced at the Volkswagen Group Components plant in Salzgitter.

A prerequisite for this is a measurement solution that enables large-scale production.

ZEISS Industrial Quality & Research Enabling eMobility

ZEISS

VASI

Together with Volkswagen, ZEISS developed a convincing measurement solution for quality assurance of the sophisticated engine concept. One challenge here was the nature of the hairpins, which pushed measurement methods from traditional engine construction to their limits. ZEISS therefore developed a measurement solution with VW enabling the car manufacturer to go into large-scale production with electric mobility.

ZEISS Industrial Quality Solutions

TI HILL HILL

Aerospace

Aerostructure

Quality assurance, maintenance & repair of all aircraft structure components

ZEISS Industrial Quality Solutions

For all types of orthopedic and dental implants

Quality assurance for medical metal components (conventional and additive)

ZEINN

Challenges in data storage, documentation and sharing arise in an ever-changing digital environment.

ZEINN

 New methods are needed to process huge and complex data.

SMT Business Units

Semiconductor Manufacturing Optics

- Lithography optics
- Mirror blocks and wafer chucks
- Optical systems, metrology devices and components for wafer inspection and lithography lasers
- Synchrotron optics
- Collectors

Photomask systems

- Mask metrology
- Mask tuning
- Mask repair
- Mask qualification
- Automation applications

Process Control Solutions

- Multibeam electron microscope (Multi SEM/eBeam)
- 3D Tomography

Semiconductor Manufacturing optics play a keyrole in structuring microchips

ZEISS

Lithography roadmap Enabled by wavelength reduction and increase of NA

Projection Optics Leading edge technology and process control enable EUV optics.

ZEISS

Principle of an interferometer

Many different design possible depending on application: Accuracy vs Complexity vs Manufacturability etc...

Examples for surface deviations

ZEISS

The Fizeau interferometer is a preferred instrument for optical surface metrology

Phase shifting is achieved by altering the OPD between reference and test surface

Phase of the interferogram:

$$I(x, y) = a(x, y) + b(x, y) \cdot \cos \phi(x, y)$$
$$\phi(x, y) = \frac{2\pi}{\lambda} \cdot OPD(x, y) = \frac{2\pi}{\lambda} \times 2n. d(x, y)$$

Image Acquisition and phase calculation Phase Shifting method

Interferograms

Wrapped wavefront

Unwrapped wavefront

 $I(\mathbf{x},\mathbf{y}) = I_0 \cdot [1 + V \cdot \cos(\phi(x, y) + \delta\phi_i)]$

 $\phi(x, y) \mod 2\pi$

Examples for Phase artifacts due to disturbances during the acquisition of the image sequence

Wavefront error due to air turbulence

Wavefront error due to vibrations

 \Rightarrow Interferometer Calibration

Wavefront error due intensity variations

Interferometer calibration

Optical path deviations in the cavity affect the measured wavefront most seriously.

Essentially, all other optical path deviations affect reference and sample wavefront in the same way $\rightarrow \Delta OPD \sim 0$ The cavity must be calibrated

i.e.

- Rotation averaging to Separate nonrotationally symmetric deviations of sample and interferometer
- Absolute calibration of the glass (CGH)

Error contributions must be considered

Real case:

Phase errors caused by

 \rightarrow Surface shape and homogeneity of the CGH-substrate

 \rightarrow Rigorous errors of the grating (electromagnetic effects)

 \rightarrow Rigorous errors due to deviations from the ideal profile form (Profile depth, aspect ratio, sidewall angle, Trenching...)

 \rightarrow Position error of the lines = CGH-placement error

Challenges in EUV surface metrology

EUV Projection Optics Figure control on atomic level

Computer Controlled Polishing

Ion Beam for figure controle at atomic scale

Figuring process

Interferometric Surface Metrology

Polishing technologies and metrology closing the loop

Projection Optics Critical quality parameters for polishing of optical surfaces.

Coatings

EUV project optics

Requirements on figure errors are ~20x tighter for EUV surfaces

EUV-Objective (13.5 nm) <u>Maréchal-criterion</u>: wavefront error $< \lambda/14$ RMS

(a wavefront can be regarded as diffraction-limited if its RMS phase error is 14 times less than its wavelength)

total wavefront errors $\Delta \phi_{total} = \sqrt{N}(n-1) \frac{\Delta h}{\lambda}$ numbers of optical surfaces

For examples:

 $\frac{\Delta h(\text{mirror surface } @\lambda = 13.5 \text{ nm})}{\Delta h(\text{lens surface } @\lambda = 193 \text{ nm})} = \sqrt{\frac{60}{6} \times \frac{1}{4} \times \frac{13.5}{193}} \approx 0.05$

reflective surface 4x more sensitivity to errors than transmissive surface

Typical requirements: Δh (@193nm) ~ 0.3 nm $\Rightarrow \Delta h$ (@13.5nm) ~ 15 pm

High-NA EUV test setup

ZEISS

Projection Optics Leading edge technology and process control enable EUV optics.

ZEISS

Starlith® 3400: Projection Optics Mirror tilts controlled with sub nrad accuracy.

Test module for EUV mirror positioning

What limits the measurement accuracy?

Electrical drift effects Position deviations Camera noise Coherent artifacts Straylight **Optical design of the interferometer** Quality of the optical components **Retrace-effects Polarisation effects Mechanical Drift** Air turbulence **Temperatur effects** acoustic influences Radiation Vibrations **Handling effects Insufficient calibration** Varying environment conditions Sample handling **Shot-Noise** Heat of electric components **Electrical drift effects Position deviations Camera noise** Cohoront artifacts

heat of electric components

A Network of more than 1,000 Companies and Institutions

Successful Cooperation with Partners from Research and Industry – Funded by the European Union and the Federal Republic of Germany

Bundesministerium für Bildung und Forschung

Bundesministerium für Wirtschaft und Energie

Thank you for your attention!

Special thanks to

All my colleagues that provide me with a lot of Material for this presentation and the whole metrology team for the support during the preparation.

Seeing beyond